
1 | P a g e

SQL injection
How do black hats use SQL-injection (SQL-i) and

how can we prevent it?

Selina Fahy – 1801153@uad.ac.uk

Intro to Security – CMP110

BSc Ethical Hacking Year1

2018/2019

2 | P a g e

Abstract

SQL Injection is a simple attack on websites (developed using languages such as PHP) which interact

with databases via SQL queries, which have not been sanitized to deny command lines from users.

The researcher has carried out some tests on some SQL Injection vulnerable websites, and found the

SQL injection vulnerability to be easily penetrated and gain information, and concluded that if

important websites such as banks or medical centres were vulnerable to the use of SQL queries, it

would be disastrous.

Furthermore, through some methods, the researcher has found that it may not be too difficult to

patch such vulnerabilities.

3 | P a g e

Contents

Introduction .. 4

Background ... 4

Aim .. 4

Procedure/Methodology .. 5

Learning SQL ... 5

Implementing some basic knowledge manually -... 7

More advanced SQL injection - ... 10

Using tools... 18

Countermeasures .. 21

Discussion.. 22

Future Work .. 22

Conclusion ... 23

References: ... 24

4 | P a g e

Introduction

Background

The Structured Query Language (SQL) server is a language used to interact with database

applications that many web applications use in order to store data/information about their services

or about their customers. However, like with most popular applications, malicious users find ways to

exploit them for their own gains. (Horner and Hyslip, 2017)

In other words SQL injection (SQLi) is an attack that makes it possible to inject malicious SQL

statements.

SQL injection is considered as an ‘old’ threat, being documented in 1998, though not having gained

much attention in the security community until around 2002, and is considered to have gained a

large amount of popularity in such a dramatic manner because of national events and findings of

particularly harmful viruses and worms during the time.

One example of this age-old threat, would be the USA 2016 June/August elections. The FBI was said

to have warned IT admins to strengthen their systems to defend against attacks that target servers

run by two US state election boards, as it was found that security breaches came from devices

around the world and involved the use of sqlmap, Acunetix, and DirBuster tools. Though the gained

information during this times was data on the voters and not on the election itself. These attacks

were a cause for concern though they were not overtly damaging, considering most of the

information gained was public anyway. (Thomson, 2016)

Another example, which would go to show the dangers of SQLi, would be an event that occurred in

2007 when a man by the name of Albert Gonzalez had upload a packet-sniffing malware that he

created into ATM systems and gained between 130 to 160 million credit and debit card numbers.

The examples above show how dangerous it could be to gain access to SQL server and how they

could be used for something malicious. As well as, to show how a very popular database server was

so easily exposed as a vulnerable application.

Aim

The aim of this report will to look at how SQL injections accomplished via the uses of various

‘dummy’ websites, and then to look at how it is that one can protect against it.

Some objectives in order to meet the above aim are:

1. Using an SQL server in order to see how it is that these ‘vulnerable’ web applications are
made.

2. Using some dummy websites using said knowledge in order to try and ‘break’ the
application and give me possible access to all the information that may be stored within
the system.

3. Then, again using such knowledge to see how one can go about patching this particular
‘tear’ in the system.

4. Look at any other ways in which SQL databases could be used or any other types of attacks
that could be used in a similar fashion or together with SQL-I (e.g Buffer overflow).

5 | P a g e

Procedure/Methodology

Learning SQL

First of all the researcher looked at how it is that SQLi became ‘malicious’ followed by how to use it.

To begin, one would be required to know that SQL is the ‘Standard Query Language’, which is very

popular in creating many web applications and databases. SQL (referring to most types e.g. MySQL,

MSSQL, Oracle, etc.) is a rather simple language, as the phrasing of the code is closely related to how

you might speak in English. In order to use SQLi the researcher went ahead and learned how to use it

first by looking at how to create tables within databases and how one can enter in data, alter the

data, remove data and so on. The researcher had used a simple SQL-lite program. Figure 1 shows

this.

In the preceding figure (Figure 1) it shows the researcher created a table that is to hold information

on books, in which the table has individual columns containing an id (the ‘primary key’ seen simply

goes to show that ‘id’ is the primary identification factor), a name, and a rating. Further we can see a

‘SELECT * FROM booklist’, which goes to show all the data within the table ‘booklist’ (‘*’ meaning

‘all’) in which would display the tables seen on the right of Figure 1. As it can already be seen, it is

not so difficult to enter data into a table or to get the complete contents of the table. Though this

might not seem so bad considering the researcher was only creating a book list, should this have

contained any other types of data, such as personal data like bank details or medical records then

this can become problematic.

Figure 1(above) - Shows the basic knowledge of SQL.

6 | P a g e

Figure 2a (above)-continued use of simple SQL knowledge

Figure 2b (above)

Figure 2c (above)

7 | P a g e

All the above figures representing Figure 2 show the effects that other commands have on the table,

what it says and what is displayed. Now, we can start to see how it’s dangerous if someone with

malicious intentions was to break into the servers.

Implementing some basic knowledge manually -

For the practical reference, there will be many attempts at SQLi, on different websites (dummy

websites) all at different ‘levels’ of complexity.

First of all the researcher looked at the most basic types of SQL injections, which was done

‘manually’ (without the use of any tools). The demo website that was used was “

https://demo.testfire.net/login.jsp ”. Though, when selecting a website to do SQLi tests or any other

types of vulnerability exploitations, one must get permission from the corresponding owner.

Firstly, it is wise to test first, if the website is susceptible to SQLi. To do this manually, the researcher

put an “ ‘ ” at the end of the URL. If the website was injectable it would return with an error,

otherwise it will do nothing. So the URL should look like this “ https://demo.testfire.net/login.jsp’ “.

In Figure 3a and b we can see that this website (https://demo.testfire.net/login.jsp) is susceptible to

SQLi as the website has returned an error, showing that it takes an input value from the URL. So, if

we did not know already that this website was SQL injectable, we would know with this simple test.

However, it is key to remember that one absolutely must obtain permission from the standing

organisation otherwise these actions are illegal.

Figure 2d (above) – Using key queries such as DELETE/UPDATE/ALTER.

https://demo.testfire.net/login.jsp
https://demo.testfire.net/login.jsp

8 | P a g e

So, to begin with our first basic SQLi, the researcher looked at how we can use the apostrophe to

hinder the username and password form at the login page.

But, before jumping straight into exploiting the web application, one can take a quick look at what

would happen behind the scenes.

The most popular method of SQLi is the always true factor of 1=1. By using the OR logic gate we can

enter a random piece of data within the login form, then tag ‘OR 1=1’ at the end of it and the

statement would always return true. Then when the login attempt returns true it should give access

to the very first account on the system, this is usually an admin of some sort.

Figure 3a (above) - A popular and legal website to test SQLi.

Figure 3b (above) - Testing for SQLi vulnerability.

9 | P a g e

So, within the original SQL code in the database there would originally be “Username: ‘text’ AND

Password: ‘text’ ”. And, unless both fields return true, one cannot gain access to the website.

When, the queries/information required are added into the fields then the SQL within the database

changes to what we want. So, first of all we want for both the ‘Username’ and ‘Password’ fields to

return true. To do this, the details entered would, more or less, be “Username: example’ OR 1=1 --

and Password: example’ OR 1=1 --“, in which the double dash (--) means ‘to comment’, which would

comment out whatever is after the ‘true’ statement.

After, pressing enter we get the following, Figure 4b:

We now have access to the admin user. Therefore, as shown, the researcher was able to use basic

knowledge of SQL in order able to gain access to a website that is vulnerable, though this example

was a very basic vulnerability.

Figure 4a (above) - Using SQLi on the login page to gain access to website.

Figure 4b (above) - Successful injection.

10 | P a g e

More advanced SQL injection -

If the next step was taken, then a more complex website would be required. The website that the

researcher used was “http://leettime.net/sqlninja.com/” (Figure 5a). With this website

(leettime.net) the researcher attempted a basic (or classic) SQL injections, but under different

circumstances.

For, the first one we will look at the ‘Basic Injection – Challenge 1’ on the web page (Figure 5a).

In which this is the page presented (Figure 5b):

As seen, there is no form field where an injection could be entered.

Therefore, a different form of injection type will be required. For, this instance the SQLi ‘UNION’ will

be used on the URL. Firstly, all that ‘UNION’ is, “is an operator that is used to combine the result sets

Figure 5a (above) – selecting a ‘level’ to start injecting.

Figure 5b (above) – ‘Basic Injection’ Page.

http://leettime.net/sqlninja.com/

11 | P a g e

of 2 or more SELECT statements” (Yang, 2017). For example injecting ‘UNION SELECT database()--’,

essentially it calls the database to a displayed field on the site.

With that, one must find out if the website is injectable, if there are any types of minor preventive

measures e.g. quotation mark tolerable.

In Figure 5c, the website is injectable, and returns to the ‘original’ page when the comments symbol

(--) and the addition symbol (+) are placed after the quotation mark (‘).

After, one must find out how many columns are within the database, which is done either by

repeatedly inputting values/’nulls’ after the ‘UNION SELECT’ until confirmation is given, or by putting

an ‘ORDER BY’ query and guess the number of columns there are.

In this example, the researcher used the manual (systematic) version of inputting ‘nulls’, and as

shown in Figure 5d, an error will be returned untill the correct number of columns are given.

Figure 5c (above) – finding the injectable sequence (e.g. -- or --+, etc.).

Figure 5d (above) - Finding the number of columns in the database.

12 | P a g e

Within, Figure 5e, it can be seen that there are 3 columns (so 3 ‘nulls’).

Therefore, with this information the ‘nulls’ were changed so that they hold a value of some sort so it

can be identified as to where they show up. In this case ‘1, 2, 3’ have been what the researcher has

decided to use. And, as seen in Figure 5e, the second column (where 2 is) displays where the

Username would normally be displayed. Therefore, the researcher can display any piece of

information where the username details would be displayed.

For example, if we replace the ‘2’ or the second ‘null’ with a call function, ‘user()’, then we can call

forth the information stored within the ‘user()’ function. In which, as shown in Figure 5g, is

‘tr0ublecreaterha@localhost’.

Figure 5e (above) – 3 columns in the current database.

Figure 5f (above) – column 2 displays on the web page.

Figure 5g (above) – using column 2 in order to display information.

13 | P a g e

So, what if the researcher was after some other piece of information, such as the database. With the

database, the researchers can then gain access to the information inside the database (Figure 5h),

e.g. user details, as well as creating, deleting, altering, data, which could be damaging to the website

owners/company(ies).

Next, the researcher went to find the MySQL version that was used in order to proceed with gaining

more information on the database and the stored information within the databases. So, using the

‘@@version’ query, we are able to obtain the MySQL version used (Figure 6).

With that, the researcher can move to finding table names that are within the database. The

particular query used to find this out involves using ‘concat’, which is and abbreviation of

“concatenation”, and will take two or more strings and combine them to make one expression

(Sweatman, 2019), and point it towards the stored table names within the information schema of

the database. (Figure 7) -“http://leettime.net/sqlninja.com/tasks/basic_ch1.php?id=-

1%27%20union%20select%201,concat(table_name),3%20from%20information_schema.tables%20w

here%20%20table_schema=database()--+”

Figure 5h (above) – using column 2 in order to display information.

Figure 6 (above) – using column 2 in order to display information.

http://leettime.net/sqlninja.com/tasks/basic_ch1.php?id=-1%27%20union%20select%201,concat(table_name),3%20from%20information_schema.tables%20where%20%20table_schema=database()--+
http://leettime.net/sqlninja.com/tasks/basic_ch1.php?id=-1%27%20union%20select%201,concat(table_name),3%20from%20information_schema.tables%20where%20%20table_schema=database()--+
http://leettime.net/sqlninja.com/tasks/basic_ch1.php?id=-1%27%20union%20select%201,concat(table_name),3%20from%20information_schema.tables%20where%20%20table_schema=database()--+

14 | P a g e

And, as shown in Figure 7, all the table names within the database are displayed on the ‘username’

section of the screen. The researcher took a greater interest in the ‘users’ table, as there is where

the most valuable pieces of information would be stored. So, to gain access, the researcher needed

to first find out the column names. This was done in a similar way to finding the table names, but

‘table’ was replaced by ‘column’, though the researcher does have to specify the ‘user’ table (Figure

8). “http://leettime.net/sqlninja.com/tasks/basic_ch1.php?id=-

1%27%20union%20select%201,concat(column_name),3%20from%20information_schema.columns

%20where%20%20table_schema=database()%20and%20table_name%20=%22users%22--+”

Now, all the columns are displayed in the username section of the screen, the researcher can now

gain access to the information of each individual user and the respective information stored in each

column. To do this the researcher injected the query that specifies the columns names that the

researcher was interested in (all) and makes the database display all that information as one string

(concat) where the username is originally supposed to be shown. Figure 9 –

“http://leettime.net/sqlninja.com/tasks/basic_ch1.php?id=-

1%27%20union%20select%201,concat(id,%20username,%200x3a,%20password,%200x3a,%20user_t

ype,%200x3a,%20sec_code),3%20from%20users--+” in which ‘0x3a’ is the hexadecimal form for a

colon (:) that is used to indicate the next line of information.

Figure 7 (above) – Getting table names

Figure 8 (above) – Getting column names

http://leettime.net/sqlninja.com/tasks/basic_ch1.php?id=-1%27%20union%20select%201,concat(column_name),3%20from%20information_schema.columns%20where%20%20table_schema=database()%20and%20table_name%20=%22users%22--+
http://leettime.net/sqlninja.com/tasks/basic_ch1.php?id=-1%27%20union%20select%201,concat(column_name),3%20from%20information_schema.columns%20where%20%20table_schema=database()%20and%20table_name%20=%22users%22--+
http://leettime.net/sqlninja.com/tasks/basic_ch1.php?id=-1%27%20union%20select%201,concat(column_name),3%20from%20information_schema.columns%20where%20%20table_schema=database()%20and%20table_name%20=%22users%22--+
http://leettime.net/sqlninja.com/tasks/basic_ch1.php?id=-1%27%20union%20select%201,concat(id,%20username,%200x3a,%20password,%200x3a,%20user_type,%200x3a,%20sec_code),3%20from%20users--+
http://leettime.net/sqlninja.com/tasks/basic_ch1.php?id=-1%27%20union%20select%201,concat(id,%20username,%200x3a,%20password,%200x3a,%20user_type,%200x3a,%20sec_code),3%20from%20users--+
http://leettime.net/sqlninja.com/tasks/basic_ch1.php?id=-1%27%20union%20select%201,concat(id,%20username,%200x3a,%20password,%200x3a,%20user_type,%200x3a,%20sec_code),3%20from%20users--+

15 | P a g e

The information in Figure 9 shows all the columns within the table “users”, though any of them

could have been cut out and deemed as irrelevant such as ‘id’. However, the above figure (Figure 9)

shows that the researcher has accessed user information and now has all the users’ username,

password, and security code.

The next step would be to look at the INSERT query, and inserting data into the database. However,

during the attempts, the researcher found that the website used for the bulk of the practical has

disabled (to the knowledge of the researcher) the inserting query for users, though it’s shown to

have been successful. At the beginning there were a few errors and many repeated attempts in

order to get to the point of recognizing that the researcher had used the ‘correct’ line of command.

So, the researcher used the ‘Insert Query’ tab and used the first challenge and came to the page

shown below (Figure 10).

Some of the errors that the researcher ran into were basic syntax errors. These being when “ ‘;

INSERT INTO users (username, password) VALUES (‘Jack’, ‘Pass1’) –“ would be entered into the

‘username’ field and with “ ‘ or 1=1 “ in both the ‘password’ and ‘Security Code’ fields. These queries

would result in the error shown in Figure 11a. To which the researcher started to remove some of

the single quotation marks in an attempt to ‘fix’ the syntax error. This lead to the inputting of “ ';

INSERT INTO users (username, password) VALUES (Jack, Pass1) –“ in the ‘username’ field and “ or

1=1 “ in the ‘password’ and ‘Security Code’ fields. This query lead to the resulting error in Figure 11b.

Finally, with the removal of the first quotation mark at the beginning of the ‘username’ query we

pass through. So, the queries would be “ ; INSERT INTO users (username, password) VALUES (Jack,

Pass1) –“ and “ or 1=1 “ in both the ‘password’ and ‘Security Code’ fields. These queries return the

‘error’ shown in Figure 11c. However, the ’error’ in Figure 11c is not an error but proof that the

query was successful, however it is showing that the query being denied to eternal users.

Figure 9 (above) – Getting all the information in the table

16 | P a g e

Figure 10 (above) – Looking at INSERT queries.

Figure 11a (above) – Finding the correct syntax in order to inject information into the table.

Figure 11b (above) - Finding the correct syntax in order to inject information into the table.

17 | P a g e

Next was the DELETE query, in which it was found that the genuine query has been denied to users,

though does show that the command would have been otherwise successful.

During the DELETE query, the researcher ran into a similar error as the INSERT query with some

syntax errors. The first input being “ '; DELETE FROM users WHERE username = 'Injector' -- “ and “ or

1=1 “ in the ‘password’ field, providing the error shown in Figure 12a. So, all the single quotation

marks for the ‘username’ field were removed, “ ; DELETE FROM users WHERE username = Injector --

“, which provided the error/success message shown in Figure 12b.

Figure11c (above) – Successful injection.

Figure 12a (above) – DELETE injection and finding correct syntax.

Figure 12b (above) – Successful injection.

18 | P a g e

To finish off the manual attempts at SQL injection the researcher looked at the UPDATE query. Using

the knowledge gained from the INSERT and DELETE queries, the researcher successfully executed

the command (the ‘error/success’ message occurs) on the first try with the following query “;

UPDATE users SET password = Pass1 WHERE username = Injector --“, with “ or 1=1 ” and as seen in

Figure 13.

Using tools

Next, the researcher looked into and used some tools in order inject into an SQLi vulnerable website.

The website used for this was “http://testphp.vulnweb.com/product.php?pic=5” as the ‘pic=5’

shows that the website is quite vulnerable though the single quotation mark test does go to verify

that it is.

The tool that was used was ‘Sqlmap’. This tool can be installed on a majority of operating systems.

The easiest way for Linux operating systems is to clone it from Github, while for windows just is to

download its .zip file, extracting the file, and using the command prompt to go to its directory and

use it by typing ‘sqlmap.py’.

For this, the researcher used a Kali Linux terminal.

The first thing done by the researcher was to test if the website was vulnerable to SQL injection by

inputting into Sqlmap the following command “sqlmap –u

http://testphp.vulweb.com/ptoduct.php?pic=5” (Figure 14). In which ‘-u’ is the specification of a

website URL that you wish to test for vulnerability. The results are shown in Figure 15.

Figure 13 (above) – Successful UPDATE injection.

http://testphp.vulnweb.com/product.php?pic=5
http://testphp.vulweb.com/ptoduct.php?pic=5

19 | P a g e

Then, the researcher attached ‘ --dbs ‘ at the end of the previous statement to view all the databases

within this website. So the query is “sqlmap -u "http://testphp.vulnweb.com/product.php?pic=5" --

dbs ”(Figure 16), which gives the results shown in Figure 17.

Figure 14 (above) – Using sqlmap on the above mentioned website.

Figure 15 (above) - Information supplied by sqlmap for the mentioned website.

Figure 16 (above) – looking for databases.

20 | P a g e

Within Figure 17 it can be seen that there are 2 available databases by the name of ‘acuart’ and

‘informaion_schema’. The researcher continues to use more commands in order to see what is in

the databases. Starting with the first one ‘acuart’. So, taking the previous command and replace “--

dbs” with “--tables -D acuart “. These commands should get the tables within the database ‘acuart’

(Figure 18).

As seen in Figure 18 the tables within the ‘acuart’ database are listed; artists, carts, categ, featured,

etc. Upon choosing a table that you would like to gain information on, the researcher moved on to

get the columns within the table. The researcher selected the first table (artists), and the previous

command was pulled forward (by pressing the up-arrow key), however “—tables” was replaced with

“-- columns –D acuart –T artists”, meaning that the researcher wanted the columns of the acuart

database where the table name is artists. The results are shown in Figure 19.

From Figure 19 we can see that there are 3 columns to this table, adesc, aname, and artists_id. It can

also be seen that the data types of each column are given.

Figure 17 (above) – The databases for the website.

Figure 18 (above) - Tables within the database ‘acuart’.

Figure 19 (above) – The columns within the ‘artists’ table.

21 | P a g e

Lastly, the researcher wanted all the data to be ‘dumped’. This means that the researcher is going to

put in a command that will allow for all the information inside the table to be given. The command

for this is similar to the one that had been used for a while now, except that “--columns “ will be

replaced by “--dump “ (Figure 20). The results are shown in Figure 21, to which all the artists on the

website are displayed.

Going back to the table drop of the practical involving the use of sqlmap, we find that a much more

devastating injection would be into the ‘users’ table where the researcher would get plenty of

valuable information handed over to them about the users.

Countermeasures

Considering the dangers of SQLi, the researcher looked at ways in which SQLi could be prevented.

Using some PHP and a created login page of a web application (Figure 22), the researcher was able

to make edits to the script as to forbid certain characters (e.g. the quotation mark (‘), certain

command words (e.g. INSERT/UPDATE etc.)). To do this, some further research was required in order

to make changes to the source file, considering that it is written in PHP. Though, this was not too

difficult, and a few patches were found and implemented (Figure 23). One such example would be

using bindValue() which binds a value to named or question mark in SQL statement. (Allardice,

Sankar, and Mane, 2019)

Figure 20 (above) - Command for gaining all the information stored within the artists table.

Figure 21 (above) - All of the information within the ‘artists’ table.

22 | P a g e

Discussion

During the practical work, the researcher found that through a series of queries, one can essentially

gain access to a web servers database(s) and potentially all the data within. To summarise, the

researcher was able to use dummy websites (where hacking is ‘legal’) and use different queries in

order to obtain the information within said websites database(s). At the end of the practical, the SQL

queries injected were mostly successful and returned the desired data/effect. The results of the

practical ultimately conclude that SQLi vulnerable websites are highly dangerous given that they

allow for malicious user to have a ‘quick’ way to gain plenty of information on users.

Future Work

Work that can follow this would be looking into Buffer Overflow. Buffer overflow is taking the

‘buffer’ of an application set up and run more information into it than was allocated when it was

designed and forcing the remaining information to overwrite the next area of memory. Other names

for Buffer overflow are Stack overflow and Heap overflow, given that ‘stack’ and ‘heap’ are the

names of the next areas of memory after buffer. Meaning that when one attempts buffer overflow

they usually overwrite into the stack memory and/or heap memory areas. These can act alongside

SQLi as they can help get by some SQLi patches, and overwrite the space that’s beyond the ‘buffer’

section and into the local variables and return address. For example, if a buffer was only given 8 byes

Figure 22 (above) – PHP login page before any alterations.

Figure 23 (above) – PHP login page after some alterations.

23 | P a g e

for a username, then a username being entered is 12 bytes long, then we have an overflow, and the

remaining characters go over into the other sections of the application.

Conclusion

To conclude, the amount of damage SQLi can cause becomes obvious, though not only to the web

application, but to the company/owner(s), and to the customers that use said web application. Being

able to use the SELECT query to view this data has a smaller impact than if an attacker is able to use

INSERT/UPDATE/DELETE or any other dangerous command that would allow someone to effectively

alter any and all data within the database.

The aims for this practical were well met, in that it was successfully shown how SQL (a popular

database server) was able to be used in such a dangerous way, should there not be significant

interference from the web designers to implement appropriate restrictions on the users’ side.

24 | P a g e

References:

Acunetix. (n.d.). What is SQL Injection (SQLi) and How to Prevent It. [online] Available at:

https://www.acunetix.com/websitesecurity/sql-injection/ [Accessed 10 Mar. 2019].

Horner, Matthew and Hyslip, Thomas (2017) "SQL Injection: The Longest Running Sequel in

Programming History," Journal of Digital Forensics, Security and Law: Vol. 12 : No. 2 , Article 10.

Thomson, I. (2016). FBI: Look out – hackers are breaking into US election board systems. [online]

Theregister.co.uk. Available at:

https://www.theregister.co.uk/2016/08/29/fbi_warns_attacks_on_election_systems/ [Accessed 10 Apr.

2019].

Yang, L. (2017). UNION (Transact-SQL) - SQL Server. [online] Docs.microsoft.com. Available at:

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/set-operators-union-transact-

sql?view=sql-server-2017 [Accessed 13 Apr. 2019].

Docs.microsoft.com. (2019). String Operators (Transact-SQL) - SQL Server. [online] Available at:

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/string-operators-transact-

sql?view=sql-server-2017 [Accessed 16 Mar. 2019].Sweatman, W. (2019).

Allardice, J., Sankar, R. and Mane, R. (2019). what does mysql_real_escape_string() really do?.

[online] Stack Overflow. Available at: https://stackoverflow.com/questions/6327679/what-does-

mysql-real-escape-string-really-do [Accessed 17 Mar. 2019].

The Dark Arts: SQL Injection and Secure Passwords. [online] Hackaday. Available at:

https://hackaday.com/2016/03/09/the-dark-arts-sql-injection-and-secure-passwords/ [Accessed 11

Mar. 2019].

Clarke, J. (2012). SQL injection attacks and defense. 2nd ed. Waltham, MA: Elsevier.

B, S. (2019). Difference between bindParam and bindValue in PHP - GeeksforGeeks. [online]

GeeksforGeeks. Available at: https://www.geeksforgeeks.org/difference-between-bindparam-and-

bindvalue-in-php/ [Accessed 13 Apr. 2019].

https://www.acunetix.com/websitesecurity/sql-injection/
https://www.theregister.co.uk/2016/08/29/fbi_warns_attacks_on_election_systems/
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/string-operators-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/string-operators-transact-sql?view=sql-server-2017
https://stackoverflow.com/questions/6327679/what-does-mysql-real-escape-string-really-do
https://stackoverflow.com/questions/6327679/what-does-mysql-real-escape-string-really-do
https://hackaday.com/2016/03/09/the-dark-arts-sql-injection-and-secure-passwords/
https://www.geeksforgeeks.org/difference-between-bindparam-and-bindvalue-in-php/
https://www.geeksforgeeks.org/difference-between-bindparam-and-bindvalue-in-php/

